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Problem Justification:

Diffusion Applications

• Heat Conduction

• Fluid Flow

• Radiation Transport

– Diffusion

– Diffusion Synthetic Acceleration

– Simplified Spherical Harmonic (SPN ) Methods
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Problem Justification:

Mesh Description

• 3-Dimensional

• Hexahedra and Degenerate Hexahedra (Prisms, Pyramids,

Tetrahedra)

• Unstructured

– Block Structured

– Curved geometries
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Equation Set:

α
∂Φ

∂t
−

−→
∇ ·D

−→
∇ Φ +

−→
∇ ·

−→
J + σΦ = S

Which can be written

α
∂Φ

∂t
+

−→
∇ ·

−→
F + σΦ = S

−→
F = −D

−→
∇ Φ +

−→
J

Where

Φ = Intensity

−→
F = Flux

D = Diffusion Coefficient

α = Time Derivative Coefficient

σ = Removal Coefficient

S = Intensity Source Term

−→
J = Flux Source Term
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Properties of the Method
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• Cell-centered (balance equations are done over a cell)

• Cell-centered and face-centered unknowns (required to

rigorously treat material discontinuities)

• Unstructured mesh

• Derivation valid for 1-D, 2-D, and 3-D geometries

• Preserves homogeneous linear solutions, second-order

accurate
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Properties of the Method

• Reduces to the standard cell-centered 7-point operator

for an orthogonal mesh

• Local energy conservation is maintained

• Unsymmetric matrix system

• Extension of the method described in

Morel, J. E., J. E. Dendy, Jr., Michael L. Hall, and
Stephen W. White. A Cell-Centered Lagrangian-Mesh
Diffusion Differencing Scheme. Journal of Computa-
tional Physics, 103(2):286-299, December 1992.

to 3-D unstructured meshes, with an alternate

derivation.
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Discretization: Conservation Equation

Integrate the conservation equation over the cell volume,

∫

Vc

α
∂Φ

∂t
dV +

∫

Vc

−→
∇ ·

−→
F dV +

∫

Vc

σΦ dV =
∫

Vc

S dV

Define cell averages and use Gauss’ Theorem:

αc
∂Φc

∂t
Vc +

∫

A

−→
F ·

−→
dA + σcΦcVc = ScVc

Discretize temporally and evaluate flux integral:

αcVc

∆t

(

Φn+1
c − Φn

c

)

+
∑

f

−→

Fn+1
f ·

−→
Af + σcΦ

n+1
c Vc = ScVc
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Discretization: Flux Terms

We need to express
−→

Fn+1
f in terms of Φn+1.

Start with the flux equation:

−→

Fn+1
f = −Dc,f

−→
∇ Φ +

−→
Jf

The flux source,
−→
Jf , is known.

The diffusion coefficient is known within a cell, but may be

discontinuous at the cell face.

The discretization must accurately model material discon-

tinuities.
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Discretization: Flux Terms

1

2

3

k

l

4P

P

P

P

m

The values of Φ at four non-planar points are needed

to determine the gradient. Any four non-planar points

(
−→
P1 ,

−→
P2 ,

−→
P3 ,

−→
P4 ) define a coordinate system in terms of

three vectors,

k̂ =
−→
P2 −

−→
P1

l̂ =
−→
P3 −

−→
P1

m̂ =
−→
P4 −

−→
P1
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Discretization: Flux Terms

A Jacobian matrix converts between the (k, l, m) coordi-

nate system and the (x, y, z) coordinate system:













Px

Py

Pz













=















∂x
∂k

∂x
∂l

∂x
∂m

∂y
∂k

∂y
∂l

∂y
∂m

∂z
∂k

∂z
∂l

∂z
∂m



























Pk

Pl

Pm













which is represented as:

−→
P x,y,z = J

−→
P k,l,m

Note that an equally valid reverse transformation from the

(x, y, z) coordinate system to the (k, l, m) coordinate sys-

tem could have been used, with a Jacobian matrix equal to

J−1.
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Discretization: Flux Terms

Since the four points are located along the axes in (k, l, m)-

space, but not in (x, y, z)-space, it is easier to take the

derivatives needed for the forward Jacobian than the reverse

Jacobian:

J =















∂x
∂k

∂x
∂l

∂x
∂m

∂y
∂k

∂y
∂l

∂y
∂m

∂z
∂k

∂z
∂l

∂z
∂m















=









−→
P2 −

−→
P1









−→
P3 −

−→
P1









−→
P4 −

−→
P1









=
[

k̂ l̂ m̂
]
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Discretization: Flux Terms

Returning to the consideration of the gradient term, expand

the k, l and m derivatives of Φ using the chain rule:















∂Φ
∂k

∂Φ
∂l

∂Φ
∂m















=

















∂x
∂k

∂y
∂k

∂z
∂k

∂x
∂l

∂y
∂l

∂z
∂l

∂x
∂m

∂y
∂m

∂z
∂m































∂Φ
∂x

∂Φ
∂y

∂Φ
∂z















= JT −→
∇ Φ

or, solving for
−→
∇ Φ and inserting the derivative definitions,

−→
∇ Φ = J−T















∂Φ
∂k

∂Φ
∂l

∂Φ
∂m















= J−T













Φ2 − Φ1

Φ3 − Φ1

Φ4 − Φ1












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Discretization: Flux Terms

Now that we know how to represent gradients from any four

points in (x, y, z)-space in (k, l, m)-space, which points do

we choose?

We are limited to adding points within the cell to maintain

a rigorous treatment of material discontinuities.

Adding four different points for each of the six faces results

in twenty-five unknowns per cell, including the cell center,

which is clearly untenable.

Fortunately, there is a better solution. . .
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Discretization: Flux Terms

Four points are not the only way to determine a gradient:

three lines that intersect in a single point can also be used.

If we place a point (and therefore an unknown Φ) in the

center of each face, the three lines formed by connecting op-

posing faces all intersect at the cell center. A single Jacobian

matrix per cell will be sufficient.
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Discretization: Flux Terms
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If the vectors connecting the face centers of opposite faces

are denoted
−→
Jk ,

−→
Jl , and

−→
Jm for the k, l, and m directions,

then the Jacobian matrix is given by:

J =

[

−→
Jk

−→
Jl

−→
Jm

]

and the inverse transpose matrix is:

J−T =
1

|J|









−→
Jl ×

−→
Jm









−→
Jm ×

−→
Jk









−→
Jk ×

−→
Jl








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Discretization: Flux Terms

There are seven unknowns in each cell. The gradient for

each face is represented by the cell value for the J−T matrix

multiplied by the k, l, and m derivative vector for that face.
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Minor direction derivatives (for example, the l and m

derivatives on the +k face) are evaluated across the full

cell, and major direction derivatives use a half cell.

For example,

−→

Fn+1
+k = −Dc,f J−T















2
(

Φn+1
+k − Φn+1

c

)

Φn+1
+l − Φn+1

−l

Φn+1
+m − Φn+1

−m















+
−→
Jf
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Discretization: Cell Face Equations

The cell center (conservation) equation has been discretized,

but we have added 3 extra unknowns per cell.

At each cell face, we apply a continuity of flux condition:

−
−→

Fn+1
c1,f ·

−→
Ac1,f −

−→

Fn+1
c2,f ·

−→
Ac2,f = 0

where c1 and c2 are the two cells that share the face f .
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Discretization: Boundary Conditions

The boundary conditions only affect the cell face equations.

On the boundaries, a Robin boundary condition is specified:

β1 Φn+1
f − β2

−→

Fn+1
c,f ·

−→
Ac,f = β3 Φbc

where β1, β2 and β3 can be specified to match

• homogeneous: Φn+1
f = 0,

• reflective: −
−→

Fn+1
c,f · n̂c,f = 0,

• vacuum: 1
2Φn+1

f −
−→

Fn+1
c,f · n̂c,f = 0,

• Dirichlet: Φn+1
f = Φbc,

• Neumann: −
−→

Fn+1
c,f · n̂c,f = −Φbc , or

• source boundary conditions:

1
2Φn+1

f −
−→

Fn+1
c,f · n̂c,f = 1

2Φbc.
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Algebraic Solution

Main Matrix System:

• Unsymmetric – must use unsymmetric solver

• Size is (4nc + nb/2) squared

• Maximum of 11 non-zero elements per row

Preconditioner for Krylov Space methods is a Low-Order

Matrix System:

• Assume orthogonal: drop out minor directions in flux

terms

• Symmetric – can use standard CG solver

• Size is nc squared

• Maximum of 7 non-zero elements per row
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Method Summary

• Cell-centered, unstructured mesh

• Derivation valid for 1-D, 2-D, and 3-D geometries

• Preserves linear homogeneous solutions, second-order

accurate

• Reduces to the standard cell-centered 7-point operator

for an orthogonal mesh

• Local energy conservation is maintained

• Material discontinuities are rigorously treated

• Unsymmetric matrix system

• Solves for (4nc + nb/2) unknowns, but only cell

centers (nc) remain between timesteps
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Implementation:

The Augustus Code Package

Author: Michael L. Hall (1/94 - present)

Architectures: Sun (SunOS and Solaris), SGI (IRIX), HP

(HP-UX), IBM (AIX)

Language: Fortran-77, plans for Fortran-90

Solver Packages: JTpack (by John Turner, LANL) for

Krylov Space methods, UMFPACK (by

Tim Davis, U of FL) for sparse direct

methods

Installations: SNLA ALEGRA hydrodynamics code,

LANL TELLURIDE low-speed flow code,

Solver for the Spartan SPN radiation

transport code.

Status: Completed, active development of new

features

Availability: Email hall@lanl.gov and we’ll talk
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Implementation:

The Augustus Code Package

Spatial Mesh:

Dimension Geometries Type of Elements
1-D spherical,

cylindrical

or cartesian

line segments

2-D cylindrical

or cartesian

quadrilaterals or triangles

3-D cartesian hexahedra or degenerate

hexahedra (tetrahedra,

prisms, pyramids)

all with an unstructured (arbitrarily connected) format.
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Results: Second-Order Proof

• 3-D Random Mesh (del = .4)

• Constant properties, No removal

• Source = Qx2

• Reflective boundaries on 4 sides

• Vacuum boundary conditions on opposite sides

• Analytic solution - Quartic:

Φ (x, y, z) = Φ (x) = a + bx + cx4
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Results: Second-Order Proof

New Method:

Problem Size (cells)
‖Φexact−Φ‖

2

‖Φexact‖2

Error Ratio

5 × 5 × 5 1.0248×10−2

10 × 10 × 10 2.6190×10−3 3.91

20 × 20 × 20 6.6082×10−4 3.96

40 × 40 × 40 1.6530×10−4 4.00

Orthogonal 7-Pt Solution:

Problem Size (cells)
‖Φexact−Φ‖

2

‖Φexact‖2

Error Ratio

5 × 5 × 5 1.0202×10−2

10 × 10 × 10 2.6205×10−3 3.92

20 × 20 × 20 6.5952×10−4 3.97

40 × 40 × 40 1.6515×10−4 3.99
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Results: Sample Problem

• 3-D Kershaw-Squared Mesh

• Constant properties

• No removal or sources

• Reflective boundaries on 4 sides

• Source and vacuum boundary conditions on opposite

sides

• Analytic solution - linear

• Grid size - 20 × 20 × 20 = 8000 nodes, 6859 cells

• 50 timesteps, 15 s / timestep on IBM RS/6000 Scalable

POWERparallel System, SP2
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Results: Sample Problem

Actual Mesh (Cell Nodes)

Dual Mesh (Cell Centers)
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Results: Sample Problem
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Results: Sample Problem
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Results: Sample Problem
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Future and Concurrent Work

• SPARTAN Code Package

• Support Operator Method

• 2-D Symmetric Method

• MHD Equations

31


